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ABSTRACT 

The Zariski theorem says that for every hypersurface in a complex pro- 
jective (resp. affine) space and for every generic plane in the projective 
(resp. affine) space the natural embedding generates an isomorphism of 
the fundamental groups of the complements to the hypersurface in the 
plane and in the space. If a family of hypersurfaces depends algebraically 
on parameters then it is not true in general that there exists a plane such 
that the natural embedding generates an isomorphism of the fundamental 
groups of the complements to each hypersurface from this family in the 
plane and in the space. But we show that in the affine case such a plane 
exists after a polynomial coordinate substitution. 

I. I n t r o d u c t i o n  

In [3] Zariski  proved the  following remarkab le  theorem.  L e t / i t  be  an  a lgebra ic  

hypersur face  in CP '~ where  n >_ 3. Then  for a generic pro jec t ive  p lane  ,4 r C]? n 

the  e m b e d d i n g  ,4 - H ~-+ C]? '~ - H genera tes  an i somorph ism ~rl(A - H )  -+ 

~rl (C]? '~ - / 4 )  of the  fundamen ta l  groups.  This  implies  the  s imi lar  fact  for an  

a lgebra ic  hypersur face  H in the  Euc l idean  space C n. Cons ider  a fami ly  of hyper -  

surfaces Hp C C ~  n (resp. Hp C C n) depend ing  a lgebra ica l ly  on p a r a m e t e r  p from 

an  a lgebra ic  var ie ty  P .  I t  is n a t u r a l  to  ask whether  there  exists  a p ro jec t ive  p lane  

(resp. an  affine p lane  A) such t h a t  the  embedd ing  A - Hp ~-~ CP n - Hp (resp. 
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A - Hp ~-+ C n - Hp) generates an isomorphism of the corresponding fundamental 

groups for every p. In both cases the answer is negative, since it is enough to 

consider the set of all hyperplanes as this family of hypersurfaces depending alge- 

braically on parameter.  But the affine case has some advantage. Namely, we can 

change the coordinate system in C n using a polynomial coordinate substitution 

(i.e., we can change the set of planes), whenever in the projective case we can 

use linear substitutions only. This observation leads to the main result of this 

paper. 

For every  fami ly  o f  algebraic hypersurfaces  Hp in C ~ depending algebraically 

on parame te r  p E P ,  one can choose a coordinate s y s t em  in C n in such a way 

that  for some  plane Ao C C ~ the embedding  Ao - Hp ~-~ C ~ - Hp generates  an 

i somorphism 7rl (A - Hp) -4 7rl (C ~ - Hp) for each p. 

The scheme of the proof can be described as follows. The mat ter  can be reduced 

to the three-dimensional case. Let p : C 3 -4 C 2 be a projection to an (x, y)-plane, 

let A0 be p - l ( L ~  where L ~ is the line (y -- 0} in the (x,y)-plane. In section 3 

we establish when the embedding A0 - H c C 3 - H generates an isomorphism of 

the fundamental  groups. It turns out that  the following conditions are sufficient. 

(1) The embedding p - l ( o )  - H C Ao - H generates an epimorphism of the 

fundamental  groups where o is the origin of the (x, y)-plane. 

(2) The mapping p ]H : H -4 C 2 is finite and, if it is/-sheeted, then the mapping 

P IHnA : H n A --~ L ~ is also/-sheeted. 

(3) There exists a nonzero polynomial g C C[x] such that  g(0) = 0 and for generic 

c E C the number of points where the curve L c = {y -- cg (x ) )  meets the image F 

of the ramification set of the mapping p IH coincides with the number of points 

where L ~ meets F. 

The proof of this fact is a modification of the original argument of Zariski who 

dealt actually with the case when g(x)  -= x,  i.e. {L c) is a pencil of lines. 

The trouble with the linear coordinate substitutions is that  those of them for 

which one of these three conditions does not hold form a subvariety of codimen- 

sion 1 in the space of the linear coordinate substitutions. Therefore, for every 

family of hypersurfaces we shall construct a wider space of polynomial coordinate 

systems so that  for every hypersurface from our family the subset of the coordi- 

nate systems in this space with one of these three conditions violated (relative to 

this hypersurface) has codimension at least l where the "bigger" space of coor- 

dinate systems we choose the larger l is. When l is larger than the dimension of 

the parameter  set P we can find a coordinate system such that  the embedding 

Ao - Hp C C 3 - Hp geaerates an isomorphism of the fundamental  groups for 
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every p. 

The paper is organized as follows. After preliminaries (section 2) we show that 

the embedding A0 - H r C ~ - H generates an isomorphism of the fundamental 

groups provided (1)-(3) hold. In section 4 we prove some technical fact which 

enable us to describe coordinate systems for which conditions (1)-(3) are true. 

In the last section we prove the main result for the three-dimensional case first 

and then we reduce the general case to the three-dimensional one. 

2. T e r m i n o l o g y  a n d  n o t a t i o n  

In this paper P and later Q denote always sets of parameters, and a set of 

parameters is always an algebraic variety over the field of complex numbers. 

Definition 2.1: Suppose that T is a closed algebraic subvariety in C n x P. Let 

Pl: T --+ C n and P2: T -+ P be the natural projections and let Hp = Pl o p21(p) 
where p C P. Then we say that {Hp} is a family of algebraic varieties with 

parameter p C P. We shall mostly deal with the case when Hp is a closed 

algebraic hypersurface in C ~ for every p E P. In this case we say that {Hp} is 

a family of hypersurfaces in C n with parameter p C P. When n = 2 we speak 

about a family of curves. 

Remark 2.2: We do not suppose that P is connected or that P has a pure 

dimension. This enables us, if necessary, to replace P by a disjoint union of its 

subvarieties. For example, we can treat P as the disjoint union of the strata of 

its canonical stratification as a singular algebraic variety. Moreover, consider a 

function ~ on P with a finite number of values such that the preimage of each 

of these values is a constructive subset of P. Consider a component P '  of P 

and suppose that ~ is constant on P '  - Pg where Pg is a closed proper algebraic 

subvariety of P ' .  

Convention 2.3: By the previous remark we suppose that for every family of 

hypersurfaces {Hp} the degree (or the Newton polygon) of the defining polyno- 

mial fp of Hp is constant on every component of P. Each polynomial fp can be 
V[z(p) represented as i u=l(fp,i) n~(p) where fp,i are irreducible polynomials which are 

non-proportional for different values of i, and hi(p) are natural. Using Remark 

2.2, we suppose again that the functions l(p) and n~(p) are constants on every 

component of P. Furthermore, since we consider the fundamental group of the 

complement of a hypersurface it is natural to restrict ourselves to the case when 

this hypersurface is reduced. Thus we can suppose and we will suppose that every 
r [  l(p) { r .'ln•(P) by hypersurface in our family is reduced (that is, we replace fp = I li=l ~Jp,~J 
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-if(p) each component of P). i : 1  fp,i on 

Remark  2.4: We say that an algebraic variety B depends algebraically on a 

polynomial f if B can be viewed as a member of a family of algebraic varieties 

whose parameter set is a Zariski open subset of the set of polynomials of fixed 

degree (or with a fixed Newton polygon). 

Definition 2.5: Let H be a reduced algebraic hypersurface in C '~ and A be a 

closed affine algebraic subvariety in C n. We say that A is H compatible if the 

embedding i: A - H "-~ C n - H generates an epimorphism of the fundamental 

groups i.: 7rl(A - H) ---> 7r1(C ~ - H). We say that A is strictly H compatible if 

i ,  is an isomorphism. We say that A is (strictly) compatible relative to a family 

of hypersurfaces if it is (strictly) H compatible for every hypersurface H in this 

family. 

DeIinition 2.6: We say that some property holds for a generic point of an alge- 

braic variety P if for every irreducible component P '  of P there exists a proper 

closed algebraic subvariety Pg such that this property is true for every p ~ P ' - P g .  

In particular if we have several properties and each of them holds for a generic 

point of P,  then all of them hold simultaneously for a generic point of P. 

3. M o d i f i c a t i o n  o f  Zariski ' s  a p p r o a c h  for t h e  n o n - l i n e a r  c a s e  

In this section the projection p: C 3 ~ C 2 is given by (x, y, z) ~ (x, y) and H C C 3 

is a reduced hypersurface whose defining polynomial is f .  Denote by Ao the (x, z)- 

plane in C 3 and by L ~ the x-axis in the (x,y)-plane (of course, Ao = p - l (L~  

Suppose that  g E C[x] is a nonzero polynomial such that g(0) -- 0. 

Del~nition 3.1: We say that the plane A ~ is appropriate with respect to the 

triple (H, p, g) if the following properties hold: 

(1) The z-axis (i.e., the line p- l (o)  where o is the origin of the (x,y)-plane) is 

H M Ao compatible in the plane Ao. 

(2) The mapping p IH : H -+ C 2 is finite and, if it is/-sheeted, then the mapping 

P IHNAo : H M Ao -+ L ~ is also/-sheeted. 

(3) For generic c E C the number of points where the curve L c := {y = cg(x)} 

meets the image F of the ramification set of the mapping p ]H coincides with the 

number of points where F meets L ~ 

The aim of this section is 
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THEOREM 3.2: Let  A ~ be appropriate with respect to ( H , p , g ) .  Then A0 is 

strictly H compatible.  

In the case when g is linear this theorem can be extracted from the original 

paper  of Zariski [3]. In general case we follow also the outline of his arguments.  

The proof consists of several lemmas. We discuss first the idea of Zariski's 

approach and fix some additional notation for the rest of the section. 

Let X be the set of points where L ~ meets {g(x) = 0}. The family {L c} can be 

viewed as a linear system of curves whose base point set is X.  This linear system 

of curves generates the mapping T: C 2 - X  --+ CP 1 such that  ~.-1 (c) -- L c -  X for 

C e (~1  (where L ~176 = {g(x) = 0}). There exists a finite set C = {ci, ..., c~} C C 

such that  for every c C C - C the curve T- i (c)  meets F at the same number of 

points. Put  Y = T-  1(C -- C) U X. For every subset K of C 2 we denote b y / ~  the 

set p - l ( K )  - H.  For instance, Y =- p - l ( y )  _ H. By condition (3) in Definition 

3.1, C does not contain 0. Since ~--i(0) = L ~ - X the set 1 /contains  A0 - H.  

Let a i , . . . ,  a~ be a bouquet of simple loops in C - C with one common point 

at the origin so that  these loops generate the fundamental group of C - C. Put  

B = ~-l(Uk ~k) u X .  
Following Zariski we shall consider the sequence of the embeddings 

Ao - H ~--~ ~ c-~ y c--~ C3 \ H. 

Our aim is to prove that  each of them generates an isomorphism of the funda- 

mental groups which yields Theorem 3.2. In brief the argument will be as follows. 

The fact tha t  the first embedding generates an isomorphism is mostly due to van 

Kampen ' s  theorem [2]. The second embedding generates an isomorphism since 

/~ is a deformation retract of Y which is a consequence of Lemmas 3.5 and 3.6 

below. The last embedding generates an isomorphism of the fundamental groups 

by the following reason. The constructive set Y is obtained from C 3 \ H by 

deleting a non-closed hypersurface. This fact enables us to show that  for every 

two-cell in C 3 \ H whose boundary does not meet the closure of this hypersur- 

face, there exists a two-cell in Y with the same boundary. This implies that  the 

induced mapping of the fundamental groups is a monomorphism. It  is obvious 

that  it is also surjective. 

Let us proceed now with more details. Put  Z = X U "r- l (C t3 oo) (i.e. Z = 

L c ' U . . . t 2 L  c~t2L~176 Set F '  = F - Z  (i.e. F'  = F N T - I ( C - C ) )  and F" = 

p-1 (F ~) N H.  The set of points where a generic curve L ~ meets F non-normally is 

contained in X,  by condition (3). Thus every non-smooth point of F is contained 

in Z since at these points none of the generic C-curves L c can meet F normally 
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whence F r is smooth. 

We need to show that  the mapping p It" : F" -+ F' is unramified. This fact 

can be checked locally. 

LEMMA 3.3: Let 7/ be the germ of an analytic surface at the origin of C 3. 

Suppose that the mapping Po: 7/ -~ (C 2, o) is finite where Po = P 17t. Let 

~, C (C 2, o) be the image of the ramification set for the mapping Po and let 

tC = pol(7) .  Suppose that 7 is smooth and p~:: ~. -4 7 is the restriction of p to 

K. Then P~c is unramified. 

Proof.' Let s be the preimage of a generic point b E (C 2, o) - 7 under the 

mapping P0. The fundamental group of (C 2, o) - ~, is isomorphic to the group of 

integers since 7 is smooth and this group acts on s Hence s can be represented 

as the disjoint union of minimal invariant subsets of s relative to this action. 

These subsets correspond to the irreducible components of 7/. Let s be the 

number of points in the preimage s of a generic point a G ? under P0- Sending 

b to a one can see that  the points of/:() generate a partition of s into disjoint 

subsets. Using the fact that  the fundamental group of (C 2, o) - y is the group 

of integers, one can check that  this partition is invariant under the action of the 

fundamental  group (it is enough to consider the action on s of a small simple 

loop from (C 2, o) - 7 around a since this loop can be viewed as a generator of 

the fundamental  group). Hence we can represent 7 / a s  the union s [.Ji=l 7-/i of the 

germs of surfaces so that  7/i N p-l(.y) = K:i where )~i C K: are the germs of 

different curves with the origin as the only common point (since Ki A p- l (a )  is 

exactly one point in s that  corresponds to 7/i). Assume that  s > 2. Consider 

the germ of the curve ~" = 7tl n7/2. By construction, the germ p(~) meets "y at the 

origin only. But it must be contained in q, since ~- is contained in the ramification 

set. Contradiction. Hence s = 1 which is the desired conclusion. | 

LEMMA 3.4: The natural embedding i: Y ~-+ C 3 - H generates an isomorphism 

of the fundamental groups i.: r l  (12) ~ ~-1(C 3 - H).  

Proos By condition (3) in Definition 3.1, C does not contain 0. Since T - - l ( 0 )  - -  

L ~ - X the set ]z contains A0 - H.  We shall see later (Lemma 4.2) that  under 

condition (2) every line which is parallel to the z-axis and which meets H at 1 

points, is H compatible. Thus condition (2) implies that  A0 is H compatible. 

Hence i .  is an epimorphism. 

Let 51 , . . . ,  58 be a set of generators in ~1 (12), and, therefore, it can be treated 

as a set of generators in lrt (C 3 - H).  We need to show that  if ~1, . . - ,  (is satisfy 



Vol. 116, 2000 UNIFORM ZARISKI'S THEOREM 329 

some generating relations in Irl (C 3 - H) then they satisfy the same relations in 

Irl (17). For this purpose it suffices to show that for every 2-cell A 1 in C 3 - H with 

a boundary 0A1 C }7 there exists a 2-cell A 2 C 1~ with the same boundary. We 

can suppose that  if u is an intersection point of 2 and the interior of A1 then A1 

meets Z normally at u, and u ~ 2~. (We can do this since the real codimension 

of X in C 3 - H is 4.) Since X is the base point set for {L c} one can choose a 

path ~ in 2 joining u and a point v C )(  in such a manner that p(v) is the only 

point from p(~) that  belongs to X and that ~ - v is contained in the smooth part 

Z* of Z. One can identify a neighborhood of Z* in C 3 with a neighborhood of 

the zero section of the normal bundle to 2*. Moreover, we can suppose that  the 

intersection of A1 with this neighborhood is contained in a fiber of this bundle. 

Choose a small 2-cell AE(u) C A1 with center at u and replace it by a cone in 

with the following properties: v is the vertex of the cone and the only point 

where the cone meets Z, the base of the cone coincides with the boundary of 

Ae(u), the intersection of the cone with the fiber of the normal bundle to 2* 

at every point of ~ - v is a circle. Repeating this procedure we obtain a 2-cell 

A2 c C 3 - H such that its boundary coincides with the boundary of A1 and its 

interior meets 2 only at points from )(. In particular, A2 C I 7. | 

Recall that  a l , . . . ,  ar is a bouquet of simple loops in C - C with one common 

point at the origin so that  these loops generate the fundamental group of C - C, 

and B -- T-]([.Jkak) U X. We have to show that /} is a deformation retract 

of Y, and, in particular, the embedding j:  /} ~-+ 17 generates an isomorphism 

j . :  7r1(/}) --+ 7h(l>). The construction of this deformation can be reduced to a 

simpler problem due to 

LEMMA 3.5: Let K be a subset of Y .  Suppose that ~ = {~t ] t e [0, 1]} is 

a path in the space of continuous mappings from K to Y such that ~o is the 

identical embedding, the restriction of ~t to K n X is the identical embedding 

for every t e [0, 1 l, ~t(F N K)  C F, and ~t(K - (X U F)) c Y - (X LI F). Suppose 

also that the restriction of ~ to (K - X) • [0, 1] is smooth. Then there exists a 

deformation D =- {Dr [ t E [0, 1]} of the identical embedding Do : R ~-+ Y such 

that pD = ~p and D is identical on [( N f i .  Moreover, if for every t the mapping 

~t is a homeomorphism between K and ~t(K) then Dt is a homeomorphism 

between [(  and DdYi ). 

Proof: Fix a neighborhood U of H - p - l ( X )  in C 3 so that ( ]np - l (b )  is compact 

for every b E C 2 (/-/ is, of course, the closure of U in C3). Suppose also that  

0 Cl p-1 (X) = H N p-1 (X), i.e. this set is finite. Consider the natural projection 



330 S. KALIMAN Isr. J. Math. 

TC 2 --+ C 2 where TC 2 is the tangent bundle of C 2, and the mapping p: C 3 ---+ C 2 . 

They generate the set T = C 3 | TC 2 with the natural projections prl: T --+ C 3 
and pr2: T --~ TC 2. Put  Y'  = C 3 - -  (H N p - l ( x  U F)) and put W = pr{ l (Y ' ) .  

Let Wo = p r l l  (P ') Mpr~I(TF ') and Wo = Prl l (p- l (F ' ) )MPr21(TF ') where TF '  

is the tangent bundle to F ~. Using partition of unity one can construct a smooth 

mapping X: W --+ T Y  ~ where T Y  ~ is the tangent bundle of Y~ with the following 

properties: 

(i) for every w E W we have P,X = pr2; 

(ii) for every w E W with prl(w) ~ U the z-coordinate of the vector X(w) is 

zero; 

(iii) for every w C W with prl(w) C H the vector X(w) is tangent to H (note 

that  this tangent vector exists since the restriction of p to H - p - l (F )  is an 

unramified covering of C 2 - F); 

(iv) the restriction of X to Wo can be extended to a smooth mapping Xo: Wo --+ 

TC 3 (where TC 3 is the tangent bundle of C 3) so that for every w E Wo with 

prl(w) e F" the vector Xo(W) is tangent to F". (This vector Xo(w) exists since 

the restriction of p to F I~ is an unramified covering of F ~, by Lemma 3.3.) 

It is worth mentioning that we need condition (iv) separately from (iii) since 

in general the mapping X cannot be extended continuously to the points w with 

prl(w) e p - l ( F )  M H. 

Consider the curve a(b) = {at(b) I t �9 [0,1]} for b �9 g - Z .  Suppose for 

simplicity that it has no selfintersection points (otherwise we can replace the 

curve with its graph). Then a(b) is a smooth real manifold. For each u0 �9 a(b) 

there exists to �9 [0, 1] such that p(uo) -= ato(b). Let vb(to) be the vector tangent 

to a(b) at ato(b) which is generated by differentiation with respect to t. Then 

the vector X(uo | Vb~(to)) is tangent to a(b) at u0. Therefore, such vectors define 

a vector field on ~(b). Let p(u) = b and let D(u) = {Dr(u) I t �9 [0, 1]} be the 

integral curve of this vector field such that it begins at the point u = Do(u). 
These curves define a deformation D of /~  - )(  in ]7 - )~ with pD = ~p unless for 

some u � 9  - ) (  the curve D(u) goes either to infinity or to H for a finite time. 

It cannot go to infinity for a finite time within U due to the fact that U M p-l(b) 

is compact for every b and the mapping p I H is finite. Outside U it cannot go 

to infinity as well, by (ii). When b ~ F the curve D(u) cannot reach H for a 

finite time due to (iii). When b �9 F the curve n(b) C F, by the assumption of 

Lemma, and D(u) cannot reach H again for a finite time due to (iv). Therefore, 

D(u) C 17 and Dt(K  - )()  C 17 for every t. 

Note that  the combination of (ii) and the facts that ~t [gnx is the identical 
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embedding and tha t  the set 0 N p-* (X) is finite implies that  D can be extended 

to ) (  by the identical deformation which proves the first s tatement  of Lemma. 

The second statement  follows obviously from the construction of D. I 

The next lemma is almost the exact repetition of Lemma 3.5 but we give its 

proof for the sake of completeness. 

LEMMA 3.6: Let K C Y and n0: K --+ Y be the identical embedding. Let Oo be 

the identical embedding of  ~-(K - X )  into C - C. Suppose that there exists a 

smooth path 0 = {Otit 6 [0, 1]} in the space of  smooth mappings from r ( K  - X)  

to C - C. Then there exist a deformation ~ = {~t} of so so that s t  Ix is the 

identical embedding for everyt ,  s ( r n g )  c r, ,~(K-(xur))  c Y-(XUF), and 

rOShK- X = OorIK_ x .  Moreover, i f  for every t the mapping Or is a diffeomorphism 

between r ( K  - X )  and its image then Nt is a homeomorphism between K and 

its image, and the restriction of s to (K  - X)  x [0, 1] is smooth. 

Proof: Note that  Y - -  X = T - I ( C  - -  C) can be treated as (C - {x~  , x ~ 

(C - C) C C x (C - C) where X~ x ~ are the x-coordinates of the points of 

X.  Denote the image of F'  in C x (C - C) by the same symbol F'. Note that  F'  

is closed in C x (C - C) and does not meet any of sets x ~ x (C - C). Indeed, 
x 0 c 0 otherwise it contains a point ( i, cO) where ~ C. This implies that  the curve 

L c~ (and, therefore, every curve L c) meets F at the corresponding point of X. 

Furthermore, this implies that  the local intersection number of L c~ and F at this 

point is greater than the similar number for L c and F where c is generic. Hence 

L c~ meets F at a fewer number of points than a generic L c does which contradicts 

the description of C. Note that  ~- can be treated as the natural  projection T2 to 

the second factor. Let ~-1 : r - l ( C  -- C) ~ C be the projection to the first factor. 

Choose a small tubular neighborhood U of F'  in "r -1(C - C )  such that  its closure 

/) in C x ( C -  C) does not meet the sets x ~ x ( C -  C), i = 1 , . . . ,  I. Using parti t ion 

of unity we can construct a vector field # on C x (C - C) so that  

- -  outside U we have r l . (# )  - 0, 

- -  # is tangent to F',  

--~ T2. (#) is a nonzero constant vector field on C - C (this means tha t  one can 

suppose that  the phase flow associated with # transforms L ~ into L ~+t for t ime 

t whenever this flow is defined correctly). 

I fb  6 K M X  put ~(b) = b and ifb 6 K - X  define ~t(b) as follows. Consider c = 

r(b) and Mc = 7 -1(0(c)). Suppose for simplicity that  O(c) has no selfinterseetion 

points. Then Mc is a smooth real manifold which is naturally embedded in 

7--1(C - C). For each a E M~ there exists t such that  r(a) = Or(c). Consider the 
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vector O~(c)#(a) at a where 0~(c) is the derivative of the function 0(c): [0, 1] -+ C 

with respect to t. This vector is tangent to Mc and, therefore, such vectors define 

a vector field pc on Me. This vector field defines uniquely an integral curve t~t(b) 

in Mc which begins at b--  ~0(b). 

The continuity of a is clear unless for some b E K - X the curve a(b) goes 

either to infinity or to x ~ x (C - C) for a finite time. But it cannot go to infinity 

since we cannot reach infinity within U for a finite time due to the description 

of U, and outside U the behavior of ~t(b) is defined by the vector field # which 

does not send points from T - I ( C  -- C) to infinity since Tl.(#) = 0. Similarly, a 

0 (C C)) cannot be reached for a finite time. Thus a is continuous and set x i • -- 

a t ( K  - X )  C Y - X for every t. Note that #c is tangent to F N M~. Hence the 

curve a(b) is either contained in F or does not meet it which yields the desired 

properties of a in the first statement. The second statement follows obviously 

from the construction of a and the fact that the integral curve a(b) depends 

smoothly on b E K - X. I 

Proo f  o f  Theorem 3.2: We can suppose that the bouquet Uk ak is chosen so that  

there exists a smooth deformation 0 of C - C to this bouquet. By Lemma 3.6, 

there exists a deformation a -- {at} of Y to B with the prescribed properties. By 

Lemma 3.5, there exists a deformation of ]~ to /~  which is identical on )(.  Thus 

it remains to show that the natural embedding of Ao - H into /~ generates an 

isomorphism of the fundamental groups. As we mentioned in the proof of Lemma 

3.4 this embedding generates an epimorphism of the fundamental groups. By 

(I) the line p- l (o)  is H compatible. Hence the loops 5 i , . . .  ,Ss which generate 

7ri(p-l(o) - H) can be viewed as generators of 7r1(/3). If we travel along a 

loop aj: [0, i] -+ C - C from the point o = aj(O) to a point c = aj ( t )  then 

Lemma 3.6 provides us with an appropriate homeomorphism between L ~ and 

L c which depends continuously on t. It generates in turn a homeomorphism 

(depending continuously on t) between Z ~ (= A0 - H) and Z c which is identical 

on )(  -- Z ~ M Z c, by Lemma 3.5. Thus after traveling along the whole loop aj we 

deform each element 5 E ~ri(Z ~ into another element 5 (j) E ~ri(L~ By the van 

Kampen theorem [2], the generating relations for 51 , . . . ,  5s in 7ri(L ~ together 

with the relations 5i = 5}J) give all the generating relations between 5 i , . . . ,  58 in 

~rl (/?). But since for every j the homeomorphism of Z ~ generated by the loop aj  

is identical on )(  the loops 5i and 5}J) coincide for every i. Hence the embedding 

of p - i  (o) - H into/~ generates an isomorphism of the fundamental groups. Since 

/} is a deformation retract of ]~, Lemma 3.4 implies that the embedding of A0 - H  

into C 3 - H generates also an isomorphism of the fundamental groups. I 
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4. T e c h n i c a l  f ac t s  

In this section we shall study polynomial coordinate substitutions which provide 

conditions (1)-(3) from Definition 3.1. Condition (3) requires most effort and 

in order to find an appropriate coordinate substitution we face the following 

problem. 

Let F be a closed attine curve in the (x, y)-plane and Lg be a curve given by 

y + h~ + g(x) = 0 where h ~ is a fixed polynomials and g is from the set Gm of 

polynomials of degree at most m. Describe reasonable assumptions on g under 

which the curve Lg is F compatible. Similarly, if {Fp[p E P} is an algebraic 

family of plane affine curves, then when is L 9 compatible with respect to each 

member of this family? 

We present first the outline of our arguments. For every closed affine curve 

F C C 2 one can suppose that  after a coordinate substitution the projection of F to 

the x-axis is finite (see Lemma 4.1). After this substitution every line x = c, c C C 

which meets F at the maximal number of points (counting without multiplicity) 

is F compatible (Lemma 4.2). Then we note that  if an algebraic family of curves 

contains an element L which has a smooth reduced F compatible component  

then a generic member  of this family is F compatible. In our particular case this 

component  of L is the line x = c (Lemma 4.3) and the other curves from the 

family are of form L 9 where g runs over a subvariety in Gin. Thus it should 

be understood when a curve Lgo can be included in such a family as a generic 

element. When the degree of h ~ is large enough the intersection number F �9 Lg 

does not depend on g (Lemma 4.6). The difference between this intersection 

number and the number of points where L~ meets F normally is called the defect 

of F relative to Lg. It is shown in Proposition 4.8 that  if the defect of F relative to 

Lao is at most m - 2 then one can construct a family of curves as above in which 

Lgo is a generic element (that is, Lg0 is F compatible). Furthermore, consider 

those g's for which the defect of F relative to L~ is at least m - 2. Proposition 

4.8 shows that  they form a subvariety of Gm whose codimension increases when 

m increases. This enables us to find a curve Lgo which is Fp compatible for every 

p C P,  and, therefore, to answer the problem above. 

The next two lemmas are formulated for hypersurfaces in C 3 but they can be 

easily reformulated for hypersnrfaces in C '~ with n >_ 3. 

LEMMA 4.1: Let (xl,Yl,Zl) be a coordinate system in C 3 and let 

{ H p C C  3 [ p e P }  

be a family of hypersurfaces with defining polynomials {fp}. Suppose that d is 
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natural such that 

d > max deg fp. 
pEP 

Let (x, y, z) be a new coordinate system such that 

(Xl, YI, Zi) ~" (gl (X, y, Z), g2 (X, y, z), z) 

where gl and g2 are polynomials. Suppose that for every constant a and b the 

degrees of gl(a ,b ,z)  and g2(a,b,z) are dl and d2 respectively. Let d2 > d and 

dl > d.  d2. Then the restriction of the projection p (given by (x, y, z) --~ (x, y)) 

to every hypersurface Hp is a finite morphism. 

Proo~ Fix p C P.  The restriction of p to Hp is finite if for every constant a and 

b the degree of the polynomial 

~ ( z ) = f p ( g l ( a , b , z ) , g 2 ( a , b , z ) , z )  

does not depend on a and b. Consider monomials _k. l~m which are present 

in fp with nonzero coefficients and consider the vectors (k, l, m). Suppose that  

(k ~ 1 ~ m ~ is the greatest among these vectors in the lexicographic order. One 

can see that  deg ~ coincides then with k~ + l~ + m regardless of the choice 

of a and b. | 

LEMMA 4.2: Let p: C 3 -+ C 2 be the projection given by (x, y, z) --+ (x, y). 

Suppose that a reduced hypersurface H in C 3 does not contain lines parallel to 

the z-axis. Consider a line L = p - l ( w )  with w C C 2 which meets H at degz f 

points (counting without multiplicity). Then L is H compatible. 

Proof: There is an algebraic subvariety S C C 2 such that  the line p- l ( s )  meets 

H at less than deg z f points counting without multiplicity iff s C S. Put  E = 

C 3 - ( H U p - I ( S ) )  and T = p IE" Then the mapping T: E -+ C 2 - S  is a fibration 

whose generic fiber F is a deg z f times punctured complex line. Let i: F --+ E be 

the natural  embedding. We have the exact sequence of the fundamental groups 

r l (F)  !-',  I(E)  1(C 2 - S) 0. 

Choose simple loops {ai} in C 2 - S around each point in a finite set {si} C S 

such that  these loops generate the whole fundamental group r l  (C 2 - S). Since 

p- l ( s i )  is not contained in H one can choose a loop ~i in E so that  it is con- 

tractible in C 3 - H and r(~/i) = ai. Then the exact sequence implies that  every 
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element in 7rl(E) can be written in the form uv where v e i , ( n l (F ) )  and u 

lies in the group generated by {[3'i]}. Consider the embedding j:  E --+ C 3 - H 

and the corresponding homomorphism of the fundamental groups j , :  7rl (E) --+ 

~1 (C 2 - U).  Note that  [q'i] E ker j ,  and j ,  (uv) = j ,  (v). On the other hand j ,  is 

surjective, of course. Hence j ,  o i , (n l (F) )  = ~rl(C 3 - H)  and we are done, since 

L - H is a generic fiber of T. I 

We shall cite notation which will be used in the remainder of this section. 

A curve F in C 2 is always reduced and it coincides with the zero locus of a 

polynomial f .  We shall denote by h ~ a polynomial in one variable of degree do. 

We shall consider C-curves in C 2 given by equations of form y + h ~ (x) + g(x) = 0 

where 9 runs over the set of polynomials G,~ of degree at most m < do. The 

family of these curves will be denoted by Vm(h~ There is a natural  bijection 

between Gm and Vm(h ~ and we denote by Lg the C-curve from Vm(h ~ that  

corresponds to g E Gm. 

LEMMA 4.3: Let F be an algebraic curve in C 2 which does not contain lines 

parallel to the y-axis. Let a polynomial g have a simple root x ~ so that  the line 

C = {x = x ~ meets F at  deg~ f different points. Let gO E Gm and g(c) = g~ 

Then the curve Lg(c) E Vm(h ~ is F compatible when Icl is sufficiently large. 

Proof: By Lemma 4.2, C is F compatible. When [c[ --+ (x~ then Lg(c) approaches 

C. Repeating the argument of [1, Lemma 3], one can see that  Lg(c) is F com- 

patible for large ]c]. (In [1, Lemma 3] we used the term "F proper" instead of 

"F compatible".  We made this replacement since the term "proper" may be 

misunderstood.) I 

Remark 4.4: Suppose that  w E Gm is a nonzero polynomial and gO E Gin. Let 

V be an affine subspace of Vm(h ~ so that  it consists of the C-curves of form 

{y + hO(x) + gO (x) + w(x)~(x) = O} where ~ E G,~ and n = m - d e g  w. Note that  

if n > 0 then for generic ~ E Gn the polynomial g = ~w has always a simple root 

x ~ such tha t  the line C described in Lemma 4.3 is F compatible. 

LEMMA 4.5: Suppose that the curve L~o meets F at the same number  of points 

as a generic C-curve in V where Lgo and V are from Remark 4.4 with n > O. 

Suppose also that F does not contain lines para l le / to  the y-axis. Then Lgo is F 

compatible. 

Proof: P u t E - = ( ( ( x , y ) , L )  E C  2 •  (x,y)  E L - F } .  L e t t ~ : s  

natural  projection. Then there exists a closed algebraic subvariety S of V such 
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that  a curve L from V meets F at a fewer number of points than the generic 

curve from V iff this curve L is from S. Hence the restriction of ~ to ~ - I ( V  - S) 

is a fibration over V - S. This fibration provides an isotopy between Loo - P and 

L - F in C 2 - F where L is a generic curve in V. By Lemma 4.3 and Remark 

4.4, L and, therefore, Loo are F compatible. I 

The number of points at which Lg meets F may change when Lg runs over 

Vm(h ~ but at least we can fix the number of intersection points of Lg and F 

counting with multiplicity. 

LEMMA 4.6: Let {Fp} be a family of curves in C 2 with parameter p �9 P and let 

do be natural so that do > rn + k where k = dim P and rn > O. Then for generic 

h ~ �9 Gdo and every p �9 P the intersection number Lg �9 Fp is finite and it does 

not depend on g �9 Gin. In particular, Lg is not a component of Fp for every p 

and g. 

Proof: Let N be the maximal possible degree of the polynomial ~(x) = 

f ( x ,  h(x)) where h runs over Gdo. Let L be the curve y = h(x). Suppose that  
N i L - F  = N - 1. Then the degree of f (x ,  h(x)) = ~ = o  aix is N - I. Note that  the 

coefficients ai = 0 for i > N - 1 only when h belongs to an algebraic subvariety 

A(1) of (]do which depends algebraically on f .  If  the leading coefficient of qo does 

not depend on h this subvariety is empty. Otherwise its codimension in Gdo is l 

when l < do. Replace F, f ,  A(1) by Fv, fp, .Ap(1) and consider B(l) = UpeP .Ap(l). 

Then the closure of B(1) is an algebraic subvariety in (Tdo whose codimension is 

at least l - k. In particular, a generic polynomial h ~ from (]do does not belong to 

B ( k + l ) .  Let h, h E (]do be such that  h has the same k + l  leading coefficients as 

does. Note that  for every p �9 P and I < k we have h �9 . l ip( t )  i ff  [~ �9 Ap(l). Hence 

for every p �9 P and l <: k if h ~ �9 Av(l ) - B(k + 1) then h ~ + g �9 ,Ap(l)  - ]3(k -[- 1) 

for every g �9 Gm, which is the desired conclusion. I 

Thus one can suppose further that  the function L 0 �9 F is constant on Gin, i.e. 

the points from Lg M F do not go to infinity when g runs over Gin. Note also tha t  

if g is a small perturbat ion of gO in Gm and Lgo meets F normally at some point 

then L o meets F normally at a nearby point. Therefore, in order to construct a 

subspace V as in Lemma 4.5 we should take care of the set ~ = { w l , . . . ,  wl} at 

which F meets Loo non-normally. Let ki be the local intersection number of F 

and L0o at  wi and let k = kl + --- + kl. 

Definition 4.7: We call k the defect of Lgo relative to F. 
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Let  #~  be the mult ipl ic i ty  of F at  a point  w C F. P u t  it(F) = max(#w ] w C F) 

and a ( F ) : =  m a x ( 4 1 o g # ( F ) ,  1). 

PROPOSITION 4.8: Let a := a (F) ,  and let Sk(F) be the subset of Gin such that 

for each g E Sk (F) the defect of Lg relative to F is a t  least k. Suppose t ha t  

(1) k < m and 

(2) Lg �9 F is constant on Gm. 

Then the following are  true. 

(i) Sk (F) is an algebraic subvariety of Gm which depends algebraically on f . 

(ii) The codimension of Sk(F) in Gm is more than ( l o g k ) / a .  

(iii) For every gO ~ Sk(F) there exists a nonzero polynomial w in one variable 

such that deg w = k + 1, w(0) = 0, and every generic C-curve Lg from V described 

in Remark 4.4 meets F a t  the same number of points as Lgo. 

(iv) / f  k < m - 1 and F does not contain lines parallel to the y-axis  then Lg is 

F compatible for every g ~ Sk (F). 

Proof." Consider  L h = { y + h ( x )  = 0 }  for e v e r y h  E Gdo. Let w ~ E F and let 

1 < k ~ < do. We denote  by To(w ~ k ~ the subset  of Gdo such tha t  for every 

h f rom this subset  the  local intersection number  of L h and F at  w ~ is at  least 

k ~ Our  first a im is to e s t ima te  the codimension of To(w ~ k ~ in Gdo. Let  x ~ be  

the  x -coord ina te  of w ~ and let ~(x,  h) = f (x ,  -h (x ) ) .  We denote  by ~ the s- th 

der ivat ive of ~o with  respect  to x. Note tha t  h E To(w ~ k ~ iff 

(4.1.0) (x ~ h(x~ = w ~ 

(4.1.s) qo~(x ~ h) = 0, 

where  s = 1 , . . . ,  k ~ - 1. Let  #o be the mult ipl ici ty of F at  w ~ Then  the equat ions 

(4.1.s) holds au tomat i ca l ly  for 1 < s < #o - 1. Let h(x) = ~-~i ci xi" One can 

rewri te  equat ions  (4.1) in the  form of polynomial  equat ions on the  coefficients 

(c,}, 

(4.2.0) (bo(Co) = 0, 

(4 .2 . s )  = 0, 

where s = # o , . . . ,  k~ - 1. Wi thou t  loss of general i ty we can suppose  t ha t  x ~ = 0. 

Then  (4.2.0) means  t h a t  -Co coincides with the y-coordinate  of w ~ and ~ is jus t  

the coefficient before the  monomia l  x ~ in the polynomial  f ( x , - h ( x ) ) .  Replacing 
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y by y + Co we can suppose that  w ~ is the origin. Then Co = 0 and one can see 

that  the codimension of To(w ~ k ~ in Gdo is one more than the codimension of 

the affine algebraic variety given by the equations (4.2.s) which do not contain 

now the variable co. Consider three cases. 

CASE 1: k ~ = #o _> 2. The codimension of To(w ~ k ~ in Gdo is 1 > (log k~ 

CASE 2: k ~ > Ito _> 2. The polynomial f does not contain monomials of degree 

less than #0. Furthermore, (x) ~~ cannot be the only monomial of degree lto in 

f with a nonzero coefficient since k ~ > It0. Hence f contains monomials of type 

yrx~~ (where r > 0) with nonzero coefficients. Suppose also that  r0 is the 

maximum among such r 's.  Consider in (4.2) the equations with s = rot + #o - ro 
for some natural  t. The assumption on the monomials of degree #o in f implies 

that  ~ -- A(ct) r~ + qls where A is a nonzero constant and the degree of the 

polynomial ~ in variable ct is less than ro. Denote by E~ the equation (4.2.s) 

with s = r0(#0) '~-1 + #0 - r0 where n can be any number from 1 to [log(k ~ - 

1) / log#o] ([el is the entire part  of a). We saw already that  E,~ depends on ct 
with t = (#o) ~-1. On the other hand, En does not depend on cj where j = (#0) i 

and i > n. Hence the codimension of To(w ~ k ~ in Gdo is [(log(k ~ - 1)) / log #0] > 

(log(k ~ - 1))/(2 log #0) > (log k~ log #0) > (log k~ 

CASE 3: #0 = 1. One can check that  for every s the equation (4.2.s) does not 

contain ci when i > s and it contains only a linear term with c~. Hence the 

codimension of To(w ~ k ~ in Gdo is k ~ That  is, it is at least 1 + (log k~ since 

k ~  

Let G be the subset of Gdo that  consists of all h of form h = h ~ + g where 

h ~ is fixed and g runs over Gin. Let T~ ~ k ~ = To(w ~ k ~ N G. We need to 

find the codimension of T~ ~ k ~ in G in the case when k ~ < m. Suppose that  

g(x) = Y]i b~xi" Note that  there is one-to one correspondence between coefficients 

{c~} and {bi} where i = 0 , . . .  ,m.  Since ~ does not contain unknowns c~ with 

i > k ~ we see that  the codimension of T~ ~ k ~ in G is at least ( l ogk~  for 

singular w ~ and it is at least 1 + (logk~ when w ~ is regular. 

Let ~b = (w l , . . .  ,wl) be different points on F and let k = (k l , . . . ,  kt) where 

each ki _> 2. Consider Ro(~,  k) t = (']~=1 TO( wi, ki). Let ~b = ( w l , . . .  ,w~) where 

n _< 1. Suppose that  all coordinates of ~ are different singular points on F. Put  

R~ k) = ~ Ro(~,  k) where the first n coordinates of r are fixed and coincide 

with ~b, and the last I - n coordinates run over all (l - n)-tuples of different 

regular points on F. By construction, Ro(~, k) depends algebraically on ~b and 

f .  Hence R~ k) depends algebraically on f .  Since Sk(F) is a union of a finite 

number of sets of type R~ k) (with k = kl + ' "  + kt) this yields (i). 
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Let x(i) be the x-coordinate of wi. Then the equations (4.2) for w ~ = wi can 

be viewed as some equations on the (ki - 1)-jet of g at x(i) and they do not 

impose any restrictions on higher derivatives of g. The existence of Lagrange 

polynomials implies that when h < m the codimension of the Ro(~, k) in G is at 

least ~-~i(logk~)/a + (l - n). Since ki ~ 2 we have kl + " '  + kz _< k l . . .  kl. Hence 

the codimension of R~ k) in G is at least (log k) /a ,  which is (ii). 

Let gO ~ Sk(F). Suppose that Lgo meets F non-normally at the points from 

only. By the Lagrange theorem, there exists a nonzero polynomial w of degree 

k such that  it has zero of order ki at each point x(i). Fhrthermore, if we allow 

the degree of w to be h + 1 then we can also suppose that  w(0) = 0. Note that  

w C G,~ by (1). Consider g := gO + ~w C G,~. For generic ~ the curve L 9 meets 

F non-normally at the points of ~ only. By (2) the intersection numbers Lg.  F 

and Lgo �9 [~ are the same, whence L 9 meets F at the same number of points as 

Lgo does, which is (iii). Now (iv) follows from Lemma 4.5. | 

COROLLARY 4.9: Let, under the assumption of Proposition 4.8, the curve F = Fp 

depend algebraically on parameter p E P. Let M = maxp a(Fp). Suppose that 

m > >  e x p ( M d i m P ) .  Then forgenericg C Gm and everyp E P the defect o fL  9 

relative to Fp is at most m - 2. In particular, for generic g the curve Lg is Fp 

compatible for every p such that Fp does not contain lines parallel to the y-axis. 

5. Main  result 

We shall consider first the three-dimensional case. 

PROPOSITION 5.1: Let { Hp} be a family of hypersurfaces in C 3 with parameter 

p C P. Then there exists a coordinate system in C 3 such that some plane in this 

system is strictly compatible relative to { Hp}. 

Proof." Let (x, y, z) be a coordinate system in C 3 such that  none of the surfaces 

Hp contains a plane z = c o n s t  (it is enough to require that the restriction of the 

projection (x, y, z) --+ (x, z) to every Hp is finite, which can be done by Lemma 

4.1). We are looking for a new coordinate system of the form 

(x + r  y + h(x + r  z) 

where r and h are polynomials in one variable whose degree satisfies 

deg h > >  r = deg ~b > >  max(deg fp, dim P).  
p 
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Consider the variety Q of all pairs q -- (p, r where r E Gr (recall that Gr 

is the set of polynomials of degree at most r) and p E P. Put  fq(x,y,  z) = 
fp(X + r y, z) where fp is a defining polynomial for Hp. Consider the family 

of hypersurfaces {H a I q E Q} where H q is the zero locus of fq. If Q0 is a 

subvariety of Q that consists of q = (p, r for some fixed r then the subfamily 

{ Ha I q E Qo} coincides with {Hp ] p E P} after a polynomial coordinate 

substitution. 

Let F(q) be the image in the (x, y)-plane of the ramification set of the restriction 

ofp  to the surface given by fq(x, y, z) = 0, and let a(F) have the same meaning for 

a curve F in the (x, y)-plane as before Proposition 4.8. Put  M = maXqE Q a(F(q)).  

We require that deg h > >  exp(M dim Q)). 

If we switch from coordinates (x, y, z) to (x, y + h(x), z) the equation of H q 

becomes fq(x, y + h(x), z) = fp(X + r  y + h(x + r  z) = 0. By Lemma 4.1 

in this new coordinate system the restriction of the projection p: C 3 ~ C 2 (given 

by (x, y, z) -4 (x, y)) to every H q is finite. When h is fixed the image of the 

ramification set of this restriction is a curve Fq in the (x, y)-plane which depends 

on q E Q. Consider polynomials g E Gm where degh > >  m > >  e x p ( M d i m Q )  

and a generic polynomial h ~ of the same degree as h. By Lemma 4.6 for every q 

the intersection number of Fq and the curve y + h ~ (x)+g(x) = 0 is finite and does 

not depend on g. In particular, this curve is not a component of Fq. Replace h 

by h + h ~ Then each curve Fq in the (x, y)-plane must be replaced by its image 

under automorphism (x,y) --4 (x,y - h~ Hence after this automorphism 

none of the curves Lg given by y + g(x) = 0 (where g E G,~) is a component of 

F a. This yields condition (2) from Definition 3.1 for (x, z)-plane A0 with respect 

to the family of surfaces {Hq[ q E Q}. 

Note that  Fq can be obtained from F(q) by an automorphism of the (x, y)-plane 

and, therefore, M = maXq~Q a(F q) since c~ is invariant under automorphisms. By 

Corollary 4.9 there exists gO E Gm such that for every q E Q the defect of Lgo 

relative to F q is at most m - 1 .  Without loss of generality suppose that gO _ 0, i.e. 

Lo = Lgo. By Proposition 4.8 for every q E Q there exists a nonzero polynomial 

g such that  g(0) = 0 and the line L0 (i.e., the x-axis) meets Fq at the same 

number of points (counting without multiplicity) as the curve Leg for generic 

c E C. This gives conditions (3) from Definition 3.1 for A0 with respect to the 

family {H q ] q E Q}. 

Consider the family of curves Oq in A0 which are the intersections H q M Ao. 
That  is, the equation of Oq is fp(X + r h(x + r z) = 0. Let k be natural 

such that  r >:> k > >  exp(dimPmaxp(degfp)). The intersection number of 
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Oq and a curve x + ~o(z) = 0 with qo E Gk coincides with the degree of the 

polynomial fp(r - qo(z), h(r - ~o(z)), z). That  is, the intersection number 

is independent of ~o (though it may depend on p). 

If E is a curve in C 2 denote by #(E) the maximum of multiplicities of its points. 

Consider the curve E in A0 given by the equation fp(X, h(x), z) = 0. Note that  

#(E) is at most deg z fp(X, y, z) < deg fp since this is the number of points at 

which a generic line x -- const meets E. Since Oq can be obtained from E by 

an automorphism we see that maxqeQ #(Oq) is bounded by maXp deg fp. Hence 

maxqe Q (~(Oq) is bounded by 4 log(maxp deg fp). 

By Proposition 4.8 for every fixed q there exists a subset S c Gk of codimension 

> >  d i m P  such that  for every ~o E Gk \ S the defect of Oq relative to the curve 

x + ~o(z) = 0 is at most k - 2. This is equivalent to the fact that the sum of the 

multiplicities of the multiple roots of the polynomial 

fp(r  - ~o(z), h(r - qo(z) ), z) 

is at most k -  1. Replacing r  by r  - ~(z) one can see that for generic r the 

sum of the multiplicities of the multiple roots of the polynomial 

fp(r162 is at most k - 2. More precisely, this is true for every r 

except for a subvariety of G,. of codimension > >  d i m P  (and this subvariety 

depends, of course, algebraically on p). This implies that there exists r E Gr 

such that for every p C P the sum of the multiplicities of the multiple roots of 

the polynomial fp(r h(r  z) is at most k -  2. Note that for every p this 

sum is defect of Oq with respect to the curve x + ~o(z) = 0 where q = (p, r and 

r 1 6 2  
Fix ~o0 and let r = Ca + ~o0. Consider the subvariety Q0 of Q as in the 

beginning of the proof. Since the intersection number of Oq and any curve x + 

qo(z) = 0 (with ~o E Gk) is independent of ~o, in order to show that  the curve 

x+~oo(z) = 0 is Oq compatible for every q E Q0 it suffices to show that  none of the 

curves Oq contains a line z -- c (see Proposition 4.8). Consider the curves {At,q} 

in the (x,y)-plane given by the equations fp(x + r  + h(x + r  = 0. 

Note that  Oq contains the line z = ciff  Ac,q contains the x-axis. But A~,q cannot 

contain the x-axis since the restriction of the projection (x, y) --+ y to every Ac,q 

is finite by Lemma 4.1. 

Hence x + ~o0(z) = 0 is Oq compatible for every q C Q0. That  is, condition (1) 

from Definition 3.1 is true for A0 with respect to the subfamily {H q I q E Q0}. 

Thus Ao is strictly compatible relative to the family {Hq ] q E Q0} by Theorem 

3.2. | 
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Remark 5.2: It is not difficult to check that every plane from a Zariski open 

neighborhood of A0 in the variety of planes (i.e., every generic plane) is strictly 

compatible with respect to the subfamily {Hq I q C Q0}. In fact, one can con- 

struct more sophisticated coordinate substitutions such that every plane becomes 

strictly Hp compatible for every p E P. The same remark is applicable in the 

case of an arbitrary dimension. 

LEMMA 5.3: Let H be a hypersurface in C n+l , let fl be a coordinate function on 

C ~+1 , and let R be a hyperplane in C '~+1 which is not given by A = const. For 

c C C put  C~ -- fl-l(c),  Rc -- Cc M R, Hc = H M C~. Suppose that for a generic 

c C C the manifold R~ is strictly He compatible in Cr -~ C '~ and that for every 

c C C the set R~ is not an irreducible component of Hc. Then R is strictly H 

compatible. 

Proo~ Let S be a finite set in C. Put  R(S)  = R - ( A - I ( S )  U H ) ,  C(S)  = 

C n+l - ( A - I ( S ) U H ) ,  As -- Ale(s), and A~ -- AIR(s ). Choose the finite set S C C 

so that  the mappings As: C(S)  -~ C - S and A~: R(S)  --+ C - S are fibrations. 

Let F be the fiber of ,ks and let F ~ be the fiber A~. Then, by assumption, the 

natural embedding e: F '  -+ F generates an isomorphism e,: 7r1(F') -+ 7c1 (F). We 

have also two other embeddings i: F --+ C(S)  and i': F '  -+ R(S)  which implies 

the commutative diagram 

0 + ~I(F)  ~ ~I(C(S))  

$ r e ,  1" 
i '  A' 

7 r l ( C - S )  ~ 0  
id 

7r1(C - S) -+ 0. 

The five isomorphisms lemma implies that 7c1(C(S)) and 7cl(R(S)) are isomor- 

phic. Since R8 is not contained in H8 for every s one can choose simple loops 

% in R(S)  around each hypersurface R~ with s E S such that % is contractible 

in R - H. Consider the natural embedding j~: R(S)  ~ R - H. It generates an 

epimorphism "'" ~rl(R(S)) --~ 7rl(R H) and, obviously, [%] E kerj', for every 

s C S. Moreover, if N '  is the smallest normal subgroup in ~rl(R(S)) that con- 

tains all [%], s C S, then ker j', = N' ,  which follows from two simple geometrical 

observations: 

- -each  two-cell in R - H becomes transversal to A-I(S) M R after a perturba- 

tion, i.e. every contractible loop in R - H can be viewed as a product of simple 

contractible loops around hyperplanes R,,  s E S; 

- -every  simple contractible loop of this type is conjugate to some [%] as an 

element of ~rl (R(S)) .  
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Similarly, we can consider the embedding j:  C(S) -~ C n - -  H. It  generates 

an epimorphism j , :  7rl(C(S)) -4 7r1(C ~ - H).  Then ke r j .  coincides with the 

smallest normal subgroup N of 7rl(C(S)) that  contains all [%], s C S, where we 

treat  [3'8] as an element of 7rl(C(S)) now. This yields an isomorphism between 

7rl (R - H)  and ~rl (C '~ - H),  which concludes the proof. I 

THEOREM 5.4: Let {Hp} be a family of hypersurfaces in C n with parameter 

p E P. Then there exists a polynomial coordinate system in C '~+1 such that 

some plane is strictly H v compatible for every p C P. 

Proof: We shall use induction. The first step of induction is Proposition 5.1. 

Assume that  for every family of hypersurfaces in C n there exists a coordinate 

system such that  some hyperplane in this system is strictly compatible relative 

to this family. Consider a family of hypersurfaces {Hp} in C '~+1. Let ~ = 

(Xl , . . .  ,x~+l)  be a coordinate system in C n+l and let A coincide with xl on 

C n+l. We can choose ~ so that  none of HB contains a hyperplane xl = const 

since the restriction of the projection ~ .4 ( x l , . . .  ,x~) to Hp can be supposed 

to be finite, by the analogue of Lemma 4.1 in the case of higher dimensions. Put  

Cc = A-l(c) .  We can view Hp,c = HpNCc as a hypersurface in the fiber Co. Put  

Q = P x C. Then we can consider {Hp,c = H q} with q = (p, c) E Q as a family 

of hypersurfaces in C n. By induction, a coordinate system ~3 = (Y2,. . . ,  Y,~+I) 

in C n can be chosen so that  some hyperplane E in C n is strictly compatible 

relative to {Hq}. In particular, none of the hypersurfaces H q contains E. Let 

R be the hyperplane T - I ( E )  in the coordinate system (Xl,9) in C ~+1 where T is 

the natural  projection (Xl, Y) -4 Y. By Lemma 5.3, the hyperplane R is strictly 

compatible relative to {Hp}. Therefore, we can reduce dimension by induction, 

which implies our Theorem. | 
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